Single stoppe # No external vacuum system required! Air consumption reduced significantly! #### KVR-GVW1530 ## [Application] Suitable for light duty cutting by vacuum chucking such nonmagnetic workpieces as aluminum alloy, copper alloy, stainless steel and #### [Features] - Compared with the conventional ejector vacuum system, the air consumption amount can be reduced significantly. - The chuck can be used by simply connecting a quick-connector type tube to a compressor in the factory. - Since no vacuum system is required, the chuck has good response and is capable of holding and releasing workpieces quickly. - Since air can be injected reversely through the suction port, the inside can be cleaned to facilitate maintenance. - The internal parts can be replaced easily by removing the front cover of the chuck. - ●The material of the main unit can be selected from two kinds; mild steel and aluminum allov. - Can be used in wet operations. [mm(in)] | (2 faces) | | | |-----------|---|---| | <u>E</u> | | | | < B2 → | Air tube(\(\phi \) 8),5m | - | | H | Vacuum
Vacuum
gage
Silencer L2 | | Suction port (1 Place) | | | | | | | | | | | | 111111 (1117) | |--------------|-------------------|----------------------------|---------------|----------------|---------------|--------|------------------------|----------------|------------------------|--|-----------------| | Model | Main Unit | Nominal | | | Dimer | nsions | | | Grid Pitch | Effective Area Be × Le 120 (4.72) × 280 (11.0) 180 (7.08) × 480 (18.8) 275 (10.8) × 575 (22.6) 120 (4.72) × 280 (11.0) 180 (7.08) × 480 (18.8) | Mass | | Model | Material | Size | L1 | L ₂ | Вı | Н | h | B ₂ | P×P | | IVIASS | | KVR-GVW1530 | Mild
steel | 150(5.90) ×
300(11.8) | 300
(11.8) | 300
(11.8) | 150
(5.90) | | | 90 (3.54) | 20(0.78) ×
20(0.78) | | 17kg/
37 lb | | KVR-GVW2050 | | 200 (7.87) ×
500 (19.7) | 500
(19.7) | 524
(20.6) | 200
(7.87) | | | | | | 43kg/
94 lb | | KVR-GVW3060 | | 300 (11.8) ×
600 (23.6) | 600
(23.6) | 624
(24.5) | 300
(11.8) | 65 | 65 15
(2.55) (0.59) | | 25(0.98) ×
25(0.98) | | 82kg/
180 lb | | KVR-GVAW1530 | Aluminum
alloy | 150(5.90) ×
300(11.8) | 300
(11.8) | 300
(11.8) | 150
(5.90) | (2.55) | | | 20(0.78) ×
20(0.78) | | 6kg/
13 lb | | KVR-GVAW2050 | | 200 (7.87) ×
500 (19.7) | 500
(19.7) | 524
(20.6) | 200
(7.87) | | | | | | 15kg/
33 lb | | KVR-GVAW3060 | | 300(11.8) ×
600(23.6) | 600
(23.6) | 624
(24.5) | 300
(11.8) | | | | 25(0.98) ×
25(0.98) | 275(10.8) ×
575(22.6) | 29kg/
63 lb | **Seal rubber ϕ 4, 10 m, air tube 5 m and clamp parts are included. **The capacity of a compressor to use must be 0.75 ## Model KVR-G VACUUM CHUCK (GRID SEAL TYPE) # KVR-G1530 Vacuum system required additionally ### [Application] Suitable for grinding by vacuum chucking such nonmagnetic workpieces as aluminum alloy, copper alloy, stainless steel and plastics. - •Workpieces are vacuum chucked in the area defined by seal rubber strings set in the grid grooves, ensuring good sealing and consistent holding power. - lacktriangle A desired work area can be set by cutting the seal rubber string (ϕ 6 \times 5 20 m included) according to workpieces. - The suction ports are provided in two places on all models to allow setting two - •A vacuum coupler to connect to the vacuum system is provided. (Vacuum is turned on and off with the valve on the vacuum system.) - Single stoppers are provided. - ●The main unit is made of iron to enable the chuck to be held by an existing magnetic chuck. "Model KETV:ELECTROMAGNETIC CHUCK WITH VACUUM CHUCK" on page 11. | | | | | | | | | | | | | | | [mm(in)] | |-----------|------------|----------------------------|------------|----------------|---------------|--|--------------|----------------|---------------|---------------|----------------------------|----------------------------|--------------|------------------------------| | | Model | Nominal
Size | Dimensions | | | | | | | | Grid Pitch | Effective Area | Mass | Applicable | | | | | Lı | L ₂ | В | Н | h | B ₂ | Lз | L4 | $P \times P$ | Be×Le | IVIdSS | Vacuum System | | <u>')</u> | KVR-G1530 | 150(5.90) ×
300(11.8) | | 324
(12.7) | 150
(5.90) | (2.16)
(7)
(7)
(8)
(8)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1.96)
(1 | 55
(2.16) | 50 | 120
(4.72) | (0.78×0.78) | 120 (4.72) ×
280 (11.0) | 22kg/ 48 lb | | | | | KVR-G2050 | 200 (7.87) ×
500 (19.7) | | | 200
(7.87) | | 50
(1.96) | | 220
(8.66) | | 180 (7.08) ×
480 (18.9) | 46kg/101 lb | | | | | KVR-G3060 | 300 (11.8) ×
600 (23.6) | | | 300 (11.8) | | | | .48) (2.48) | 275
(10.8) | 25×25
(0.98×0.98) | 275 (10.8) ×
575 (22.6) | 82kg/180 lb | VPU-E10
VPU-D20
VPU-EG | | | KVR-G4080 | 400 (15.7) ×
800 (31.5) | | 824
(32.4) | 400
(15.7) | | | | | 350
(13.7) | | 375 (14.7) ×
775 (30.5) | 146kg/321 lb | | | | KVR-G50100 | 500(19.7) ×
1000(39.4) | | | 500
(19.7) | | | | | 475
(18.7) | | 475 (18.7) ×
975 (38.3) | 228kg/503 lb | |